

ERL Guide
15/09/2002 13:31

A Guide to the Exteca Rule Logic

Version History
3 July 2002 First Draft

Author
Llewelyn Fernandes

Contents
Introduction ...3
Adding rules to an ontology..4

How to add rules ..4
How rules get used ..4

Rule types ...5
Word..5
Morphology ..5

Stemmer...5
Plural stemmer ...5
Case morpher...6

Phrase ...6
Sequence ..6
Sentence ...6
Section match ..6
Or ..6
And..7
Probability..7
Applying weights to subrules ..7
Further examples ...7

Effective rule-writing ..7
Weighting ...8

Introduction
This document provides some notes on using the ERL, which is the language for describing
categorisation rules within an Exteca ontology.

Adding rules to an ontology
In order for an ontology to be used for categorisation of documents it requires a set of rules
for each concept. These rules describe features of content that may relate to the concept,
thereby prompting the categorisation of that content under that concept.

How to add rules
The simplest way to add rules to an ontology is to let the categorisation engine do it for you!
This involves calling the generateDefaultRules() method of the CategorisationEngine class
before you load the ontology. See the categorisation module documentation for further
details.

Using default rules provides very limited categorisation accuracy and generally at some stage
you will want to augment them or completely replace them. This involves adding rules
statements to the concepts in the ontology. Here is an example

<concept-content id="boating">
 <rules content="text">
 <rule logic="’boat’"/>
 <rule logic="’life jacket’"/>
 <rule logic="’yacht’"/>
 </rules>
</concept-content>

Let’s look at this example in detail. First we declare that we are describing content for
concept “boating”:

 <concept-content id="boating">

Next we declare that we are writing rules for content identified by type “text”:

 <rules content="text">

The categorisation engine makes no particular interpretation of what “text” is. The label
merely allows you to segregate rules for different types of content.

Next we define the rules. Each rule identifies a textual feature that, if found, will contribute
towards the categorisation of a document under the concept “boating”.

<rule logic="’boat’"/>
<rule logic="’life jacket’"/>
<rule logic="’yacht’"/>

The Genesis technology from Exteca will provide a means for generating quality rules
automatically based on sample texts. Genesis is currently under development.

How rules get used
When the catgorisation engine processes a document it is performing the following steps:

1. Look at the document and find all the matching words in the rules of the ontology.
2. Apply the logic for the matched rules as defined by the rules in the ontology.
3. Calculate the categorisation confidence based on the matched rules.

In step 3 the categorisation confidence is found using a probabilistic calculation which is a
measure of how much evidence there is that the document is about the given concept. So,
when building rules the important point to bear in mind is that you are writing down the

evidence that the engine should look for when making its categorisation decision. The more
evidence that is found the more confident the engine can be in its decision making.

Rule types
This section describes the syntax of the rule logic string. Rule logic takes the form of a string
of nested rule elements. For example "title('kite', 'flying')" looks for the words 'kite' and 'flying'
in the title of a document. The following sections describe the syntax of each rule element.

Word
A word is specified within single quotes:

 'rainbow'

It is only matched when the exact word is found in the document.

Morphology
The categorisation engine supports an extensible model for handling word morphology. New
morphology handlers can be written to support the Morpher interface and plugged into the
engine.

Currently three morphers are provided – a stemmer and a plural stemmer, and a case
sensitive morpher. See the categorisation module documentation for details of how to code
for them.

Stemmer
A stemmed word is either specified as a word to be stemmed using the '#stem' morpher:

 '#stem(selling)'

or as a word that has already been stemmed using '#-stem

 ‘#-stem(sell)’

In both cases the rule will match against all stems of the word (e.g. sell,
selling, seller etc).

Plural stemmer
The plural stemmer matches singular and plural forms of the same word. It is specified using
#plural on the plural form:

 ‘#plural(babies)’
 ‘#plural(donkeys)’

or #-plural on the singular form:

 ‘#-plural(baby)’
 ‘#-plural(donkey)’

Case morpher
Normally the categorisation engine will convert all text to lowercase before matching. The
case morpher preserves the case so that case-sensitive matches can be made:

 ‘#case(Jack)’
 ‘#case(jack)’

Phrase
A phrase is specified by placing two or more words in quotes:

 'a shot in the dark'

you can use morphers within a phrase:

 '#stem(farm) supplies'

Sequence
A sequence is specified by placing subrules in a sequence grouping:

 sequence(‘round’, ‘robin’)

Note that when the subrules are just words you have the equivalent of a phrase rule, so the
above rule is equivalent to

 ‘round robin’

Sentence
A sentence rule is specfied by placing subrules in a sentence grouping:

 sentence('win', 'lucky')

A sentence rule matches against cases where all the subrules occur in the same sentence.

Section match
Rules can be matched within a particular section of a document. Sections are defined in the
document using XML tags.

A section match rule is specified by placing subrules in a grouping using the name of the
section to match against:

 title('rabbit', 'dog', 'chase')
 cv(skills(‘presentation’, 'sales and marketing'))

In the first example we are looking for a title tag containing all the words
'rabbit', 'dog' and 'chase'. In the second example we are looking for a 'skills'
tag within a 'cv' tag that contains the word ‘presentation’ and the phrase 'sales marketing'.

Or
An or rule is specified by placing subrules in an or grouping:

 or('cakes', 'biscuits', 'sweets')

The or rule will match if any of its subrules match. The score will be the score of the greatest
scoring child.

And
An and rule is specified by placing subrules in an and grouping:

 and('holiday', 'abroad')

The and rule will match if all of its subrules match. The score will be the score of the lowest
scoring child.

Probability
A probability rule is specified by placing subrules in a probability grouping:

 probability(and(‘cat’,’hat’), ‘mat’)

The probability rule will return a probabilistic combination of all the evidence from all the
subrules. It is equivalent to specifying each subrule individually as <rule> elements in the
ontology:

<rules content="text">
<rule logic="and(‘cat’,’hat’)"/>
<rule logic="’mat’"/>

</rules>

Applying weights to subrules
Each subrule can be weighted by prefixing the weight (in the range 0-100) on the front of the
subrule:

 30:'apple'
 60:sentence('pear','cherry')

If no weight is supplied the default of 100 is assumed.

Further examples

30:title(‘#stem(healthy)’)

Contributes a score of 30 if a stem of the word ‘healthy’ is found in the title section of
the document.

or(10:sentence(‘car’,’bike’), 20:title(‘car’,’bike’))

Contributes a score of 10 if the words ‘car’ and ‘bike’ are found in any sentence in the
document, or a score of 20 if the same words are found in the title.

Effective rule-writing
As mentioned earlier, writing rules is about writing down evidence for a match against a
concept. This writing down of evidence is somewhat different to just listing the vocabulary
associated with a concept and is the key to writing good rules. Writing down the evidence is
an exercise in

1.Listing the vocabulary associated with the concept
2.Specifying the ways in which this vocabulary is characteristically used in association with
the concept (e.g. what phrases are formed from the words, how are words and phrases used
within sentences, what stemming is significant, etc)
3.Specifying the strength of this evidence, or more accurately, specifying the degree to which
this evidence distinguishes documents about the concept from documents about any other
concept.

This last point is concerned with specifying the weighting associated with the rule and is
discussed in the next section.

Weighting
Weighting is an important issue in rule building. Without weighting your rules the decisions
made by the engine are very unsubtle – it is either 0% or 100% confident in its decision.
What's more without weighting it only requires one rule to match for a 100% confidence to be
recorded.

The weight on a rule specifies how likely the document is about the category given the
evidence specified in the rule.

Let’s take the example above and add some weights to the rules:

<concept-content id="boating">
 <rules content="text">
 <rule logic="10:boat"/>
 <rule logic="20:life jacket"/>
 <rule logic="30:yacht"/>
 </rules>
</concept-content>

Now when the word “boat” is found it only contributes a score of 10 towards the overall score.
Similarly for the other rules. In this way the more evidence is found the more confident the
categorisation engine is in its decision.

